If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+3w-6=0
a = 4; b = 3; c = -6;
Δ = b2-4ac
Δ = 32-4·4·(-6)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{105}}{2*4}=\frac{-3-\sqrt{105}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{105}}{2*4}=\frac{-3+\sqrt{105}}{8} $
| Y=x-48 | | 5(1-4x=65 | | 25x-60=360 | | 5x+40+20x-100=360 | | p²+25p+150=0 | | 6x2+4x+8x=7 | | 3x²-16x+5=0 | | 7(b)=21 | | x(x-10)=240 | | X^2=36+4x-28 | | 3x^2+8=-27 | | 6(n)=42 | | 3(x+5)-4=10 | | 2/3x-5=1/2x+1 | | 2x-5x+3=10 | | 3×-5-5x=3 | | 2a+55=6a-7 | | m(150)=2.50(150) | | 2/3x-5=1/2+1 | | 5/6t+2/3t=3 | | 3(x-4)=6x+17 | | 8x−16=40 | | 1/2x^2+36=0 | | 3(2p+7)=15) | | 120=130x | | x^2+23x-100=0 | | .36m=$63.00 | | 9.9=2.1-1.3x | | 3s-7=2-17 | | d+2=100345545 | | 6-x/4=-4 | | (3-4i)-(7-2i)=0 |